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Squeezing operation is critical for continuous-variable quan-
tum information, enabling encoding of information in phase 
space to a resolution otherwise forbidden by vacuum noise1. 
A universal squeezing gate that can squeeze arbitrary input 
states is particularly essential for continuous-variable quan-
tum computation2,3. However, the fidelity of existing state-
of-the-art implementations is ultimately limited due to their 
reliance on first synthesizing squeezed vacuum modes of 
unbounded energy4,5. Here, we circumvent this fundamental 
limitation by using a heralded squeezing gate. This allows 
improved gate fidelity without requiring more squeezed ancil-
lary vacuum. For a specific target squeezing level for coher-
ent states, we present measured fidelities higher than what 
would be possible using non-heralded schemes that utilize up 
to 15 dB (ref. 6) of best available ancilla squeezing. Our tech-
nique can be applied to non-Gaussian states and provides a 
promising pathway towards high-fidelity gate operations and 
fault-tolerant continuous-variable quantum computation.

Gaussian operations are essential building blocks for continuous-
variable quantum information processing. With the exception of the 
squeezing operation, all other Gaussian operations can be readily 
realized with near unit fidelity in quantum optics. However, the cur-
rent capability to implement squeezing operations with high fidelity 
remains limited. This is unfortunate, because the squeezing opera-
tion is a prerequisite for universal quantum computation2,3. It is 
also a necessary component for many other fundamental quantum 
operations like the controlled-Z gate7–9, the quantum non-demoli-
tion gate10, the control phase gate11 and quantum error correction12. 
Moreover, its application to non-Gaussian states facilitates quantum 
information tasks such as decoherence mitigation13, preparation of 
non-classical states14 and quantum state discrimination of coherent-
state qubits15.

Although extensive effort has been devoted to the generation 
of squeezed vacuum6,16, the development of a universal squeezing 
gate that can act on arbitrary input states has been lagging behind. 
Recent experiments have successfully generated a squeezed vacuum 
with a squeezing magnitude of 15 dB (ref. 6). In contrast, demonstra-
tions of a universal squeezing gate have only attained 1.2 dB for a 
reliable fidelity of 94% (refs. 17,18). High squeezing levels for vacuum 
inputs are possible through the parametric amplification process 
in an optical cavity. However, extending this method to arbitrary 
input states presents substantial challenges due to cavity loss14,19,20 
and interference effects21,22.

Instead, current state-of-the-art implementations of a universal 
squeezing gate use an ancillary squeezed vacuum as a resource to 

drive the squeezing gate4,5,17,18. Once the ancillary state has been pre-
pared, the squeezing gate can be implemented using Gaussian mea-
surements and feed-forward operations. However, highly squeezed 
ancilla are required to achieve a reasonable fidelity. Unit fidelity can 
only be achieved with an infinitely squeezed ancilla. Thus, in realis-
tic implementations, the output fidelity will always be limited.

Here, we present and experimentally demonstrate a heralded 
squeezing gate that overcomes this limitation. A heralding filter is 
implemented in the feed-forward operation, whereby an enhance-
ment in fidelity can be achieved by increasing the filter strength with-
out requiring more squeezing resources. In contrast to conventional 
implementations, this scheme can approach unit fidelity. With the 
inclusion of the present squeezing gate, we thus have a complete set 
of Gaussian operations that can be implemented with high fidelity.

The universal squeezing gate performs the unitary operation   
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, where a is the annihilation operator and  

rt is the target squeezing strength. Our squeezing gate is illustrated 
in Fig. 1. First, an optical parametric amplifier is used to produce an 
ancillary squeezed vacuum with squeezing parameter ra. Next, an 
input state ρin is mixed with the ancillary state on a beamsplitter with 
transmissivity ts. The reflected mode is then split on a beamsplit-
ter with transmissivity tm so that its amplitude and phase quadra-
tures can be measured simultaneously. The measurement outcome, 
denoted by a complex number αm, is used to herald a successful 
squeezing operation by employing a probabilistic filter. The gate is 
successfully heralded with the following probability (see Methods):
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This filter function, which was previously used to emulate a noise-
less linear amplifier23–25, depends on two parameters: the filter 
strength gf ≥ 1, and the cutoff parameter αc. A large filter strength 
will result in a higher output fidelity at the expense of a lower suc-
cess probability. When gf = 1, the heralded squeezing gate reduces to 
the conventional squeezing gate. The cutoff parameter determines 
the operational regime; a larger cutoff will allow for the squeez-
ing of states with a higher mean photon number. Finally, with a  
successful heralding event, the measurement outcomes of  
amplitude and phase are rescaled by the electronic gains gx and 
gy, and fed forward to the transmitted mode to complete the  
squeezing operation. The target squeezing level is determined by 
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the ancillary squeezing level and the transmissivity of the two beam-
splitters (Supplementary Section 1).

The faithfulness of a squeezing gate is typically benchmarked  
by the fidelity between the output and ideal target state. For  
Gaussian inputs within the operational regime, this fidelity is  
independent of the input quadrature amplitudes. This is because  

we operate at the unity gain point where the mean quadrature  
amplitudes of the output and target coincide (Supplementary 
Section 1).
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Fig. 1 | Experimental layout of the heralded squeezing gate. The gate is composed of three parts. First, the input state and an ancillary squeezed vacuum 
are prepared. Second, the two states are mixed on a beamsplitter with transmissivity ts. The reflected part of the input state is sent to a dual homodyne 
measurement where the two conjugate quadratures, amplitude ̂X and phase Ŷ, are measured with a split of tm. This measurement, in conjunction with a 
heralded filtering function, feed-forwarding and a displacement operation, constitute the core of our probabilistic squeezing gate. Finally, a verification 
homodyne is employed to characterize the squeezed output. Transmissivities ts and tm can be tuned to obtain a trade-off between fidelity and success 
probability. By setting tm = 1 in our experimental demonstration, we obtain a higher success probability compared to the dual homodyne set-up, without 
much degradation in the fidelity. AM/PM, electro-optic amplitude/phase modulators; LO, local oscillator; AUX, auxiliary beam.
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Fig. 2 | Fidelity against success probability for various target squeezing 
values. Starting with a pure squeezed ancilla of 6 dB, the fidelity is plotted 
as a function of success probability for three values of the target squeezing: 
2 dB, 4 dB and 6 dB. The shaded area represents the accessible operational 
regime of the presented squeezing gate. For comparison, the fidelity of a 
conventional deterministic squeezing gate is superimposed (filled circles). 
In all cases, a substantial enhancement in fidelity is achieved with the 
heralded squeezing gate, at the expense of a lower success probability. The 
cutoff αc is chosen to include more than 98% of the total statistics to ensure 
the Gaussianity of the output is preserved (Supplementary Section 4).
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Fig. 3 | Phase-space diagram for the squeezing gate. To verify the phase 
invariance of the squeezing operation, five coherent states (A–E), located 
at different regions of phase space, were chosen as inputs. The target 
squeezings are 2.30 dB, 4.81 dB, 5.84 dB, 8.85 dB and 10.16 dB, respectively. 
The corresponding inputs, the experimental and the desired squeezed 
outputs are represented by the noise contours (1 s.d. width) of their Wigner 
functions. In all circumstances, the squeezing gate behaves consistently, 
irrespective of the input amplitude or phase.
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Figure 2 illustrates the trade-off between fidelity, target squeezing 
and success probability. We identify two operational regimes distin-
guished by the filter strength. When the filter strength is low, we oper-
ate in the first regime, which exhibits a favourable success probability. 
The majority of fidelity enhancement can be obtained without drop-
ping below 1% success probability. Regardless of the target squeez-
ing, a substantial improvement in fidelity is obtained compared to the 
conventional approach. In the second regime, a high filter strength 
allows near unit fidelity for any target squeezing rt ≤ ra, which is 
impossible conventionally. An attractive feature of our scheme is that 
we can choose to operate in either regime by simply tuning the filter 
strength without reconfiguring the experimental set-up.

We now report the experimental results. An auxiliary squeezed 
vacuum with 6.0 dB squeezing and 6.5 dB anti-squeezing was used 
as a resource to drive the squeezing gate. In the experiments, we 
performed a single quadrature measurement by setting tm = 1. This 
allowed for a higher success probability compared to a dual quadra-
ture measurement, while maintaining comparable fidelity enhance-
ment. In this case, the transmissivity ts was set according to = −t e r

s
2 t 

(Supplementary Section 1). To test the squeezing gate, we prepared 
several coherent input states and characterized their outputs by 
performing homodyne measurements on the amplitude and phase 
quadratures. We implemented at least 106 runs for each input state 
to generate enough statistics.

First, we present the results for five input states with different 
phases and with magnitudes ∣αin∣ ranging from 0.70 to 1.92 (Fig. 3).  
The target squeezing for these states varies between 2.3 dB to 
10.16 dB. A true squeezing gate operates on arbitrary inputs irre-
spective of their amplitude or phase. This was verified by the mea-
sured outputs of our squeezing gate.

Second, we characterize the fidelity as a function of target squeez-
ing in Fig. 4a. The best conventional output fidelity attainable in an 
idealized experiment using the same ancillary resource but assum-
ing no loss is plotted as a benchmark. We show that this benchmark 
can be surpassed by increasing the filter strength without requiring 
a more squeezed ancilla. The trade-off between fidelity and success 
probability is illustrated in Fig. 4b. For most runs, the success prob-
abilities are greater than 10−4.
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Fig. 4 | Improvement in fidelity over conventional techniques for a series of target squeezing values for states A–E. a, The optimal fidelities attainable in 
two scenarios are plotted as performance benchmarks: the presented squeezing gate when a dual homodyne is performed (top blue dash-dotted curve) and 
a conventional squeezing gate (bottom orange curve). Both lines assume no experimental imperfections, representing the optimal fidelity attainable from our 
initial squeezed resource. Experimental results with target squeezing between 2.30 dB and 10.16 dB are plotted as filled circles and show an increase in fidelity 
as the filter strength increases (darker gradient colour). Filled triangles show the fidelity obtained when the filter strength is set to one. b, The improvement in 
fidelity comes at the expense of decreasing success probability. Error bars represent 1 s.d. of the output fidelity (Supplementary Section 3).
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Third, Fig. 5a illustrates the relationship between fidelity and fil-
ter strength. The continuous increase in fidelity as a function of filter 
strength agrees with the theoretical model accounting for experi-
mental imperfections (for a detailed analysis see Supplementary 
Section 4 and Supplementary Fig. 7). The deterministic limit is plot-
ted to identify the minimum filter strength required to exceed this 
benchmark. We clearly surpass this benchmark for all the datasets.

Finally, Fig. 5b showcases the performance of the heralded 
squeezing gate in the high-fidelity regime when the filter strength 
is increased to 12.63. For an input magnitude of 2 91inα∣ ∣ = .  and 
target squeezing of 2.3 dB, we measured a fidelity of 0.985 ± 0.001. 
This fidelity cannot be achieved with the current best squeezed 
resource6 in the conventional scheme subject to the same 
homodyne detection efficiency. Assuming idealized experimental 
process with zero loss, obtaining this fidelity would require a pure 
10.5 dB squeezed ancilla.

In conclusion, we propose and experimentally demonstrate a 
heralded squeezing gate that achieves near unit fidelity for coherent 
inputs while requiring only modest ancillary squeezing. Crucially, 
heralding circumvents the requirement for a highly squeezed ancilla 
as is necessary in conventional methods. The trade-off between 
fidelity and success probability can be tuned at will, and the majority 
of fidelity improvement can be achieved without the success prob-
ability dropping below 1%. This methodology enables us to synthe-
size squeezing gates to a fidelity that would otherwise be impossible 
for conventional schemes, even with a pure and infinitely squeezed 
ancillary resource subject to the same experimental loss. In doing 
so, our techniques complete the set of all Gaussian operations that 
can be experimentally performed with high fidelity.

There are a number of situations where trading determinism for 
high-fidelity squeezing can be useful. Notably, in Supplementary 
Section 2 we show that our techniques can be adapted to squeeze non-
Gaussian states, such as the single-photon state and the Schrödinger’s 
cat state, with near unit fidelity. This provides a feasible pathway to 
creating exotic non-classical states26, which are key resources for 
computation and engineering sophisticated nonlinear evolutions27,28. 
High-amplitude cat states, for example, are critical to certain models 
of universal continuous-variable computation29,30. In the cluster state 
setting, such non-classical states constitute a resource that enables 
a continuous-variable cluster to perform computations that cannot 
be efficiently simulated classically2,3,31. Here, such resources only 
need to be prepared offline, and a non-deterministic mechanism 
for synthesizing them merely adds an overhead to the preparation 
procedure. Furthermore, in quantum sensing29,30 and illumination, 
the most physically pertinent resource cost is often the number of 
photons sent. For example, each probe risks damaging the sample in 
biological sensing32, while in covert sensing, each probe risks detec-
tion by an adversary33. In such scenarios, it becomes quite reasonable 
to pay a heavier cost during state preparation to maximize the effi-
cacy of each probe. Each of these possibilities merits investigation, 
whereby one can ascertain the extent to which it is worthwhile to 
trade determinism for high fidelity.
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Methods
Experimental details. As depicted in Fig. 1, the experiment consisted of four 
parts: a squeezed vacuum source, input preparation, a squeezing gate composed 
of homodyning and feed-forward, and a homodyne station for characterizing the 
output state. The main light source was a continuous-wave frequency-doubled 
Nd:YAG laser (Innolight Diablo), producing an ~300 mW fundamental wave 
at 1,064 nm and a 400 mW second-harmonic wave at 532 nm. The fundamental 
beam passed through a mode cleaner cavity with a finesse of 760 to further purify 
its spatial mode and attenuate the high-frequency noise of the laser output. The 
input coherent states were created by modulating the fundamental beam at 4 MHz 
sideband frequency using a pair of electro-optical modulators. The squeezed 
vacuum was prepared in a doubly-resonant bow-tie cavity where below-threshold 
optical parametric amplification (OPA) took place using a 10.7 mm potassium 
titanyl phosphate crystal periodically poled with 9 μm period. The front and 
rear surfaces of the crystal were superpolished and anti-reflection-coated with 
reflectivity R < 0.1% at 1,064 nm and R < 0.2% at 532 nm. Three intracavity mirrors 
were coated to be highly reflective at both 1,064 nm and 532 nm (R > 99.99% for 
the two concave mirrors and R = 99.85 ± 0.05% for the flat mirror) and the input/
output coupler had a customized reflection of 83 ± 1% at 1,064 nm and 73 ± 1.2% 
at 532 nm. Up to 11 dB squeezed vacuum could be generated with a bandwidth of 
~36 MHz.

Special care was taken in the implementation of all phase locks throughout 
the experiment. The OPA cavity was locked on co-resonance with both the 
fundamental beam (1,064 nm) and the pump beam (532 nm) by means of the 
Pound–Drever–Hall technique, with a 11.25 MHz phase modulation on the pump. 
The same modulation signal was also utilized to lock the relative phase between 
the signal beam and the squeezed ancilla that is output from the OPA. The relative 
phase between the seed and the pump was carefully controlled using a phase 
modulation at 41.5625 MHz on the seed beam. We used this modulation to ensure 
that the OPA always operated at parametric de-amplification, yielding amplitude-
squeezed vacuum. The interference between the seed and the local oscillators/
auxiliary beam on each homodyne station was controlled similarly with an 
amplitude modulation (24.25 MHz) and phase modulation (30 MHz) on the signal 
beam, giving access to the measurement of an arbitrary quadrature angle.

In the experimental investigation of our squeezing gate, we concerned 
ourselves with five different coherent inputs, each assigned with a particular target 
squeezing. By setting ts = 1, these input states were characterized by homodyne 
measurements on the amplitude and phase quadratures. The experimental 
parameters and measured results for the data depicted in Figs. 3–5 are provided in 
Supplementary Table 1.

Filter function. The filter function is used to determine if the squeezing gate 
operation is successful or not. This is accomplished by picking a random number 
from a uniform distribution between 0 and 1 and comparing that to Pf(αm) 
(equation (1)), where αm denotes the measurement outcome of the in-loop dual 
homodyne detection. The operation is heralded as successful when the random 
number is less than Pf(αm). In this case, the measurement outcome is amplified and 
fed forward. Otherwise, the operation is considered to have failed and is aborted. 
The acceptance rate Pf(αm) thus determines the likelihood of the acceptance of each 
outcome, which depends on the amplitude of the input, the filter strength and the 
cutoff. For an initial Gaussian distribution of αm, the resultant distribution remains 
Gaussian provided that the cutoff is sufficiently large, but with its mean and 
variance both being amplified by gf (ref. 25). To be concrete, by applying the filter 
function on an unnormalized Gaussian ensemble with mean α0
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distributions joined at the circle ∣α∣ = αc. The inputs with αm ≥ αc are unaffected, 
whereas those with αm < αc are filtered and become proportional to
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Note that only the second part (equation (3)) that undergoes post-selection is 
desired. Therefore, a sufficient cutoff should be able to embrace this Gaussian as 
much as possible. To be more explicit, it was proposed in ref. 25 that

g g 2 (4)c f
2

m f m
α α β σ= ∣ ∣ + ∕α

Here, 
m

σα  is the standard deviation of the input distribution and β quantifies 
how well the cutoff circle embraces the output distribution. On restoring proper 
normalization of the output distribution, we obtain the success probability of the 
filtering operation as
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We note that a larger cutoff enables a wider operational range of the filter function, 
but at the expense of decreased success probability. For an input ensemble with a 
large amplitude, a sufficiently large αc is required; otherwise, the part of the  
output distribution beyond αc is subject to distortion25. Hence, αc needs to 
be carefully tailored according to the input ensemble to ensure a faithful 
squeezing operation while still maintaining a reasonable probability of success 
(Supplementary Section 5).
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